Ta có :A = x2 + 4y2 - 4x + 32y + 2078 = (x2 - 4x + 4) + (4y2 + 32y + 64) + 2010 = (x - 2)2 + (2y + 8)2 + 2010
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
(2y + 8)2 \(\ge\)0 \(\forall\)y
=> (x - 2)2 + (2y + 8)2 + 2010 \(\ge\)2010
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2y+8=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\2y=-8\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-4\end{cases}}\)
Vậy Min của A = 2010 tại x = 1 và y = -4
sửa đề B = 3x2 + y2 + 4x - y
Ta có B = \(3\left(x+\frac{2}{3}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{19}{12}\ge\frac{-19}{12}\)
Vậy GTNN của B là \(\frac{-19}{12}\)khi \(x=\frac{-2}{3};y=\frac{1}{2}\)