\(xy+yz+xz\le x^2+y^2+z^2\le3\)
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu"=" xảy ra khi x=y=z=1
Vậy...
\(P\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\)
Mà \(xy+yz+zx\le x^2+y^2+z^2\le3\)
\(P\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu bằng xảy ra khi x=y=z=1