*Max
2(x^2+y^2)-2xy=8
<=> x^2+y^2+ (x-y)^2=8
<=> A\(\le\)8
Dấu bằng xảy ra khi (x,y)={(2,2),(-2,-2)}
*Min
2(x^2+y^2)=8+2xy
<=>3(x^2+y^2)=8+x^2+y^2+2xy
<=>3A=8+(x+y)^2
<=>A\(\ge\)8/3
Dấu bằng xảy ra khi (x,y)={(\(\frac{\sqrt{2}}{3},-\frac{\sqrt{2}}{3}\)),(\(-\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\))}
Tìm x,y để biểu thức sau đạt max
A= 1983-x2-3y2+2xy-10x+14y
B=17x2-x4+4y(x+y)-76
A=-(x^2+y^2+5-2xy+10x-10y)- 2(y^2-2y+1)+1988
A=-(x-y+5)2-2(y-1)2+1988\(\le\)1988
B=-(x^4-16x^2+64)+(x^2+4xy+4y^2)-12
câu b ko r đk