Điều kiện
Vậy miền xác định của hàm số là D = ( 1 ; + ∞ ) { e e }
Chọn A
Điều kiện
Vậy miền xác định của hàm số là D = ( 1 ; + ∞ ) { e e }
Chọn A
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Giá trị nhỏ nhất của hàm số \(y=\sqrt{4-x}+\sqrt{3}\) trên tập xác định của nó là
A: 2 + \(\sqrt{3}\)
B: 2\(\sqrt{3}\)
C: 0
D: \(\sqrt{3}\)
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Tập xác định D của hàm số
y = ( x 2 - 3 x + 2 ) 3 5 + ( x - 3 ) - 2 là
Tập xác định D của hàm số y = ( 3 x - 5 ) π 3 là
Tập xác định D của hàm số y = ( 3 x - 5 ) π 3 là
A. R \ { 5 3 }
B. ( 5 3 ; + ∞ )
C. [ 5 3 ; + ∞ )
D. ( 3 5 ; + ∞ )