1. Khi \(m=-1\Rightarrow5x+2>0\Rightarrow x>-\dfrac{2}{5}\), suy ra \(f\left(x\right)>0\) không có tập nghiệm là \(R\).
Khi \(m\ne-1,f\left(x\right)>0\forall x\in R\) khi:
\(\left\{{}\begin{matrix}m+1>0\\\Delta=5^2-4\cdot2\left(m+1\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>\dfrac{17}{8}\end{matrix}\right.\)
Vậy: \(m>\dfrac{17}{8}\)
2. Cũng chia ra hai trường hợp khi \(m=-1,m\ne-1\) như trên.
Khi \(m\ne-1,f\left(x\right)< 0\forall x\in R\) khi:
\(\left\{{}\begin{matrix}m+1< 0\\\Delta=5^2-4\cdot2\left(m+1\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{17}{8}\end{matrix}\right.\) (vô lí)
Vậy: \(m\in\varnothing\)
3, 4. Làm tương tự như hai ý 1, 2 nhé.
TH1: m=-1
\(\Leftrightarrow f\left(x\right)=\left(-1+1\right)x^2+5x+2\)
=>f(x)=5x+2
=>Khi m=-1 thì f(x)>0 khi x>-2/5; f(x)>=0 khi x>=-2/5; f(x)<0 khi x<-2/5; f(x)<=0 khi x<=-2/5
=>Loại
TH2: \(m\ne-1\)
\(f\left(x\right)=\left(m+1\right)x^2+5x+2\)
\(\text{Δ}=5^2-4\cdot\left(m+1\right)\cdot2\)
\(=25-8m-8=-8m+17\)
Để f(x)>=0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-8m+17< =0\\m+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-8m< =-17\\m>-1\end{matrix}\right.\Leftrightarrow m>=\dfrac{17}{8}\)
Để f(x)<=0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-8m+17< =0\\m+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=\dfrac{17}{8}\\m< -1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-8m+17< 0\\m+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>\dfrac{17}{8}\\m>-1\end{matrix}\right.\Leftrightarrow m>\dfrac{17}{8}\)
Để f(x)<0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-8m+17< 0\\m+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>\dfrac{17}{8}\\m< -1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)