Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)
\(\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)
\(\Leftrightarrow m^2-6m+8< 0\)
\(\Leftrightarrow2< m< 4\)
Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)
\(\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)
\(\Leftrightarrow m^2-6m+8< 0\)
\(\Leftrightarrow2< m< 4\)
Cho tam thức bậc 2:f(x)=x2-(m+2)x+8m+1(m à tham số).Có bao nhiêu giá trị nguyên của tham số m trên [-2022;2022] để f(x) luôn không âm với mọi x
1. Tìm tất cả các giá trị của tham số m để hàm số f(x) = \(\sqrt{\left(m+4\right)x^2-\left(m-4\right)x-2m+1}\) xác định với mọi x thuộc R
1,với giá trị nào của a thì bpt \(ax^2-x+a\ge0,\forall x\in R\)
2,cho f(x)=\(-2x^2+\left(m+2\right)x+m-4\) tìm m để f(x) âm với mọi x
3,tìm m để x2-2(2m-3)x+4m-3>0, với mọi x thuộc R
4, cho f(x)=mx2-2x-1. Xác định m để f(x)<0 với mọi x thuôc R
Tìm tất cả các giá trị thực của tham số m để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có tập nghiệm S=R
Giải giúp với ạ
Cho tam thức bậc 2 f(x)=(m-1)^2-2(m-2)x+m-3; (m#1), (m là tham số). Tìm điều kiện của m để f(x) luôn luôn âm với mọi x thuộc R
Tìm các giá trị của tham số m để các tam thức bậc hai sau có dấu không đổi (không phụ thuộc vào x) :
a) \(f\left(x\right)=2x^2-\left(m+2\right)x+m^2-m-1\)
b) \(f\left(x\right)=\left(m^2-m-1\right)x^2-\left(2m-1\right)x+1\)
Cho biểu thức f(x) = 2x^2 - 12x + 18. Xét các phát biểu sau:
1. f(x) > 0 với mọi x thuộc R
2. f(x) > 0 với mọi x khác 3
3. f(x) > hoặc = 0 với mọi x thuộc R Mọi người giải cụ thể giúp em với ạ! Em cám ơn.
Cho tam thức bậc hai f(x) = ax^2 + bx + c >0 với mọi x thuộc R. Cmr f(x) luôn biểu diễn thành tổng bình phương hai nhị thức bậc nhất.
Cho f(x)=x2+(m+2)x+8m+1
Tìm số nguyên của tham số m để f(x)>0 với mọi x
A.26
B.27
C.28
D.29