Áp dụng hệ thức vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=-2m-5\end{matrix}\right.\)
Ta có:
\(x^2_1+x^2_2=18\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=18\)
\(\left(2m-2\right)^2-2.\left(-2m-5\right)=18\)
\(4m^2-8m+4+4m+10-18=0\)
\(4m^2-4m+1=5\)
\(\left(2m-1\right)^2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{5}+1}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)