tìm m để pt có nghiệm
m(\(\sqrt{1+x^2}-\sqrt{1-x^2}++2\)) = \(2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}\)
cho pt:x2-5x+2m-2=0 tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thỏa mãn: \(\sqrt{\text{(x^2-4x_1+2m-2)}}+\sqrt{x_2}\)=3
Cho pt x2 - 3x + m = 0 (1)
a) giải pt với m= 2
b) Tìm m để pt(1) có 2 nghiệm phân biệt x1, x2 thỏa mãn : \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
1Tìm m để pt \(x^3+x^2+x=m\left(1+x^2\right)^2\) có nghiệm
2 Cho pt \(\left(m+1\right)x^4-3mx^2+4m=0\) Tìm m để pt
a. Có 4 nghiệm phân biệt
b, Có đungs 2 nghiệm
c, Có 4 nghiệm đồng thời 1 nghiệm nhỏ hơn \(-\sqrt{5}\) 3 nghiệm còn lại lớn hơn \(-\sqrt{2}\)
Cho pt ẩn x : x2 - 5x + m - 2 = 0 (1)
a) Giải pt (1) khi m = -4
b) Tìm m để pt có 2 nghiệm dương phân biệt x1 , x2 thoả mãn hệ thức:
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
cho A=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
điều kiện xác định:\(x\ne1\) \(x\ge0\)
tìm \(mA=\sqrt{x}-2\)
để pt có 2 nghiệm phân biệt
1) tìm m để pt sau có 2 nghiệm \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=m\)
2) tìm m để pt sau có 1 nghiệm
a) \(\sqrt{x+1}-m\sqrt{x-1}+2\sqrt[4]{x^2-1}=0\)
b) \(\sqrt{\frac{x-1}{x+2}}-m\sqrt{\frac{x+2}{x-1}}+2=0\)
Cho pt : (m-4)x2-2mx+m-2=0 (x là ẩn)
a) Tìm m để pt có nghiệm \(x=\sqrt{2}\). Tìm nghiệm còn lại
b) Tìm m để phương trình có 2 nghiệm phân biệt.
c) Tính x12+x22 theo m.
Cho pt : \(x^2-3x+m=0\). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\)thỏa :
\(\sqrt{x_1^2+1}\sqrt{x_1^2+1}=3\sqrt{3}\)