Đáp án D
Đặt t = x 2 , t ≥ 0 . Ta được phương trình: t 2 − 20 t + m − 1 2 = 0 (2).
Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương t 1 , t 2 phân biệt 0 < t 1 < t 2 .
⇔ Δ ' > 0 S > 0 P > 0 ⇔ − m 2 + 2 m + 99 > 0 20 > 0 m − 1 2 > 0 ⇔ − 9 < m < 11 m ≠ 1 ∗ .
Bốn nghiệm của phương trình (1) lập thành cấp số cộng là: − t 2 , − t 1 , t 1 , t 2 .
Ta có: − t 2 + t 1 = − 2 t 1 − t 1 + t 2 = 2 t 1 ⇔ 3 t 1 = t 2 ⇔ t 2 = 9 t 1 .
Theo định lý Viet, ta có: t 2 = 9 t 1 t 1 + t 2 = 20 t 1 . t 2 = m − 1 2 ⇔ t 1 = 2 t 2 = 18 m − 1 2 = 36
Suy ra: m = 7 hoặc m = - 5 (thỏa (∗)).
Vậy tổng tất cả các giá trị m thỏa yêu cầu bài toán là: 7−5=2.