Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x ( x - 2 ) 2 ( 2 x + m + 1 ) ∀ x ∈ ℝ Có bao nhiêu số nguyên âm m để hàm số g ( x ) = f ( x 2 ) đồng biến trên khoảng
A. 5
B. 2
C. 3
D. 4
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ ℝ . Biết f 0 = 1 và 2 - x f x - f ' x = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình f x = m có hai nghiệm thực phân biệt.
A. m < e 2
B. 0 < m < e 2
C. 0 < m ≤ e 2
D. m > e 2
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét hàm số g x = f 2 x 3 + x - 1 + m . Tìm m để m a x 0 ; 1 g x = - 10
A. m = -13
B. m = -12
C. m = -1
D. m = 3
Cho hàm số y = f (x) có đạo hàm liên tục trên ℝ , với f (x) > 0 và f (0) = 1. Biết rằng f ' ( x ) + 3 x x - 2 f ( x ) = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4
B. - e 6 < m < - 1
C. - e 4 < m < - 1
D. 0 < m < e 4
Cho hàm số f x = 2 x 2 - 2 x - 4 x - 2 k h i x ≠ 2 m + 1 k h i x = 2 Tìm tất cả giá trị thực của tham số m để hàm số đã cho liên tục trên ℝ
A. 5
B. 4
C. 6
D. 7
Cho hàm số y=f(x) liên tục trên ℝ , có đạo hàm f ' ( x ) = x 3 ( x − 1 ) 2 ( x + 2 ) . Hỏi hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 0
D. 2
Cho hàm số y=f(x) xác định trên ℝ \ 2 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau.
Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có ba nghiệm phân biệt.
A. m ∈ 2 ; 3
B. m ∈ 2 ; 3
C. m ∈ 2 ; 3
D. m ∈ 2 ; 3
Cho hàm số y = f(x) liên tục trên R sao cho m a x x ∈ 0 ; 10 f ( x ) = f ( 2 ) = 4 . Xét hàm số g ( x ) = f ( x 3 + x ) − x 2 + 2 x + m . Giá trị của tham số m để m a x x ∈ 0 ; 2 g ( x ) = 8 là
A. 5
B. 4
C. -1
D. 3