Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = m - sin x cos 2 x nghịch biến trên khoảng [0;π/6]?
A. 1.
B. 0.
C. 2.
D. Vô số.
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
cho hàm số y = x3 - 3x2 + mx + 4
1 . khảo sát sự biến thiên và vẽ đồ thị (c) cỏa hàm số đã cho khi m = 0
2 . Tìm M để hàm số nghịch biến trên khoảng \(\left(-1;3\right)\)
Tìm tất cả giá trị của m để hàm số y = 2 x 3 + 3 m - 1 x 2 + 6 m - 2 x + 3 nghịch biến trên khoảng có độ dài lớn hơn 4
A. m< -1 hoặc m >7.
B. m< -1.
C. m >7.
D. m= -1.
Có bao nhiêu số nguyên m<100 để hàm số y = x + m x 2 + x + 1 nghịch biến trên khoảng ( 0 ; + ∞ ) .
A. 98.
B. 99.
C. 97.
D. 96.
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Tìm các giá trị của m để hàm số y = 2 - x - 2 2 - x - m nghịch biến trên khoảng (-1; 1)
A. m ≤ 1 2 , m > 2
B. m ≤ 1 2
C. m > 2
D. m ≤ 2