Lời giải:
Để điểm $A(2,-3)$ thuộc đt đã cho thì:
$(m-1)x_A+(m+1)y_A=2m+1$
$\Leftrightarrow (m-1).2+(m+1)(-3)=2m+1$
$\Leftrightarrow 2m-2-3m-3=2m+1$
$\Leftrightarrow -m-5=2m+1$
$\Leftrightarrow -6=3m$
$\Leftrightarrow m=-2$
Lời giải:
Để điểm $A(2,-3)$ thuộc đt đã cho thì:
$(m-1)x_A+(m+1)y_A=2m+1$
$\Leftrightarrow (m-1).2+(m+1)(-3)=2m+1$
$\Leftrightarrow 2m-2-3m-3=2m+1$
$\Leftrightarrow -m-5=2m+1$
$\Leftrightarrow -6=3m$
$\Leftrightarrow m=-2$
Cho các đường thẳng \(y=x+1\left(d_1\right),y=3x-2\left(d_2\right),y=2m+3x-1\left(d_3\right)\)
a) Vẽ đồ thị hàm số \(\left(d_1\right),\left(d_2\right)\) trên cùng hệ trục tọa độ
b) Tìm m để 3 đường thẳng đồng quy
c) Cm rằng \(\left(d_3\right)\) để luôn đi qua 1 điểm với mọi giá trị của m
Cho 2 đường thẳng
(d₁): y = \(\left(2+m\right)x+1\:\:\left(m\ne-2\right)\)
(d₂): y = \(\left(1+2m\right)x+2\:\left(m\ne-\dfrac{1}{2}\right)\)
a) Tìm m để (d₁) và (d₂) cắt nhau.
b) Với m = -1, vẽ (d₁) và (d₂) trên cùng một mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của 2 đường thẳng đó.
c) Tìm khoảng cách lớn nhất từ A(1;3) đến (d₁).
Cho các đường thẳng \(y=\left(2m+1\right)x-4m+1;y+2m^2-1=\left(m^2+m+1\right)x-2m;\left(3m-1\right)x+\left(2-2m\right)y=1\) . Cmr các đường thẳng trên cùng đi qua một điểm
Cho hai đường thẳng \(\left(d_1\right)\):\(y=\left(m^2-1\right)x+m^2-5\) với \(\left(m\ne\pm1\right)\); \(\left(d_2\right):x+1\);\(\left(d_3\right):y=-x+3.\).Xác định m để 3 đường thẳng \(d_1\),\(d_2\),\(d_3\) đồng quy
Với điều kiện nào của k và m để 2 đường thẳng \(y=\left(k-2\right)x\) \(+m-1\)
và \(y=\left(6-2k\right)x+5-2m\)
a) trùng nhau
b) song song
c) cắt nhau
d) cắt nhau trên trục tung
e) biết m = 3 tìm k để 2 đường thẳng cắt nhau trên trục hoành
B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)
Cho hai đường thẳng
\(\cdot\left(d_1\right):y=\left(m^2-1\right)x+m+2\) \(\left(m\ne\pm1\right)\)
\(\left(d_2\right):y=\left(5-m\right)x+2m+5\) \(\left(m\ne5\right)\)
Tìm m để hai đường thẳng trên song song
tìm m và n để trong mỗi hàm số sau là hàm số bậc nhất:
a, \(y=\left(3n-1\right)\left(2m+3\right)x^2-\left(4m+3\right)x-5m^2+mn-1\)
b, \(y=\left(m^2-2mn+n^2\right)x^2-\left(3m+n\right)x-5\left(m-n\right)+1\)
c, \(y=\left(m-1\right)\left(n+3\right)x^2-2\left(m+1\right)\left(n-3\right)x-4mn+3\)
d, \(y=\left(2mn+2m-n-1\right)x^2+\left(mn+2m-3n-6\right)x+mn^2-2m+1\)
giúp mk vs m.n ơi!!!!! camon m.n nhìu nà!!! :)))
8. Cho các đường thẳng
\(d:y=\left(m-2\right)x+m+7;\)
\(d_1:y=-mx-3+2m;\)
\(d_2:y=-m^2x-2m+1;\)
\(d_3:y=-\dfrac{2}{3}x+\dfrac{5}{3};\)
\(d_4:y=-\dfrac{1}{6}\left(m+3\right)x=+4.\)
Tìm m để
a.\(d//d_1\)
b.\(d\equiv d_2\)
c.\(d\) cắt \(d_3\) tại điểm có tung độ \(y=\dfrac{1}{3}\)||
d. \(d\perp d_4\)