\(S=\sqrt{x-2}+\sqrt{y-3}\)
\(\Rightarrow S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\)
\(\Rightarrow S^2=x-2+2\sqrt{\left(x-2\right)\left(y-3\right)}+y-3\)
\(\Rightarrow S^2=x+y-5+2\sqrt{\left(x-2\right)\left(y-3\right)}\)
\(\Rightarrow S^2=1+2\sqrt{\left(x-2\right)\left(y-3\right)}\)
Vì \(2\sqrt{\left(x-2\right)\left(y-3\right)}\ge0\)
\(\Rightarrow1+2\sqrt{\left(x-2\right)\left(y-3\right)}\ge1\)
\(\Rightarrow S^2\ge1\Leftrightarrow\orbr{\begin{cases}S\ge1\left(tm\right)\\S\le-1\left(ktm\right)\end{cases}}\)
\(\Rightarrow S_{min}=1\Leftrightarrow2\sqrt{\left(x-2\right)\left(y-3\right)}=0\)
TH1 : \(x-2=0\Leftrightarrow x=2\Rightarrow y=6-2=4\)
Th2 : \(y-3=0\Rightarrow y=3\Rightarrow x=6-3=3\)
Vậy \(S_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)hoặc \(x=y=3\)
Áp dụng bđt Bu-nhi-a-cốp-xki ta có
\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1+1\right)\left(x+y-5\right)=2\left(6-5\right)=2\)(vì \(x+y=6\) )
\(\Rightarrow S^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le S\le\sqrt{2}\)
\(\Rightarrow minS=-\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x-2}}{1}=\frac{\sqrt{y-3}}{1}\\x+y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2,5\\y=3,5\end{cases}}\)