1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
e: Ta có: \(E=\left(x-8\right)^2+\left(x+7\right)^2\)
\(=x^2-16x+64+x^2+14x+49\)
\(=2x^2-2x+113\)
\(=2\left(x^2-x+\dfrac{113}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{225}{4}\right)\)
\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1: Ta có: \(A=36x^2+12x+1\)
\(=\left(6x+1\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{6}\)
2: Ta có: \(B=9x^2+6x+1\)
\(=\left(3x+1\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)