\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)= \(\left|2-5x\right|+\left|5x\right|\ge2+5x-5x=2\)
min A=2 \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow0\le x\le\frac{2}{5}}\)
\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)= \(\left|2-5x\right|+\left|5x\right|\ge2+5x-5x=2\)
min A=2 \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow0\le x\le\frac{2}{5}}\)
tìm giá trị nhỏ nhất của biểu thức
C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
tìm giá trị nhỏ nhất của biểu thức :
A = x2 _ 4x + 7
\(B=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
Gửi những ai thích tập luyện thêm:
Giải các phương trình sau:
a) \(\sqrt{x-5}+\sqrt[3]{3-x}=2\)
b) \(\sqrt{2x-3}+\sqrt{7-x}=\sqrt{5-2x}+\sqrt{3x-1}\)
c) \(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
d) \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=2\)
Tìm Min:
a) y= \(\sqrt{x^2+6x+10}\) - 3
b) y= \(\sqrt{\frac{x^2}{9}+2x+10}\)
c) y= \(\frac{-3}{\sqrt{\frac{x^2}{8}-2x+17}}\)
d) y= \(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
e) y= \(\sqrt{25x^2-20x+4}\)+ \(\sqrt{25x^2}\)
Giải phương trình:
a) \(2\sqrt{20x}-3\sqrt{45x}+4\sqrt{80x}=33\)
b) \(3\sqrt{9x-27}+2\sqrt{25x-75}-\sqrt{49-147}=48\)
Help me :(((((
tìm giá trị nhỏ nhất của
B=\(\sqrt{25x^2-30x+9}+\sqrt{25x^2-40x+16}\)
Tìm x, biết
a) \(\sqrt{9x^2}\)=12
b) \(\sqrt{25x^2}\)=\(\left|-50\right|\)
tìm x biết
a, \(\sqrt{(x+3)^2}\)=12
b, \(\sqrt{25x-25}-\sqrt{9x-9}\)=10