\(B=\sqrt{\left(5x-3\right)^2}+\sqrt{\left(5x-4\right)^2}\ge\left|5x-3\right|+\left|4-5x\right|\ge5x-3+4-5x=1\).
Dấu "=" xảy ra khi và chỉ khi \(3\le5x\le4\Leftrightarrow\dfrac{3}{5}\le x\le\dfrac{4}{5}\)
\(B=\sqrt{\left(5x-3\right)^2}+\sqrt{\left(5x-4\right)^2}\ge\left|5x-3\right|+\left|4-5x\right|\ge5x-3+4-5x=1\).
Dấu "=" xảy ra khi và chỉ khi \(3\le5x\le4\Leftrightarrow\dfrac{3}{5}\le x\le\dfrac{4}{5}\)
tìm giá trị nhỏ nhất của biểu thức :
A = x2 _ 4x + 7
\(B=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
tìm giá trị nhỏ nhất của biểu thức
C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
tìm giá trị nhỏ nhất của A=
\(\sqrt{4x^2+4x=1}+\sqrt{25x^2+10x+1}\)
cho f(x) = \(\sqrt{5x^2+20}+\sqrt{5x^2-32x+64}+\sqrt{5x^2-40x+100}+\sqrt{5x^2-8x+16}\) Tìm giá trị nhỏ nhất của f(x)
Gửi những ai thích tập luyện thêm:
Giải các phương trình sau:
a) \(\sqrt{x-5}+\sqrt[3]{3-x}=2\)
b) \(\sqrt{2x-3}+\sqrt{7-x}=\sqrt{5-2x}+\sqrt{3x-1}\)
c) \(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
d) \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=2\)
Tìm tất cả các giá trị của x để \(\sqrt{1+10x+25x^2}=1+5x\)
\(\sqrt{25x+25}-\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{4x+4}+\sqrt{x+1}=27\)
tìm x biết
a, \(\sqrt{(x+3)^2}\)=12
b, \(\sqrt{25x-25}-\sqrt{9x-9}\)=10
\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)Tìm x biết
a) \(\frac{3\sqrt{x}-5}{2}\)- \(\frac{2\sqrt{x}-7}{3}\)+1=20
b) \(\sqrt{9x^2+45}\) - \(\frac{1}{12}\sqrt{16x^2+80}\) +\(3\sqrt{\frac{x^2+5}{16}}\)
-\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)=9