Tìm GTNN của:
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x>0;y>0\text{ và }x+y<1\)
tìm GTNN của biểu thức, biêts x+y=1 và x>0, y<0
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
cho x,y>0 và x+y<=1.TÌM GTNN của \(A=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)
Cho x > 0; y > 0 và x + y = 1.
Tìm GTNN của \(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Cho x,y>0 và x+y<=1,tìm GTNN: \(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
Cho x > 0, y > 0 thỏa mãn x + y ≤ 1. Tìm GTNN của M = \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\).
Cho x,y,z >0 và x+y+z =3
Tìm gtnn của : p= x/1+y^2 +y/1+z^2 +z/1+x^2
Cho x>0, y>0 và \(x^2+y^2=1\). Tìm GTNN của \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)