bạn phải chơi doll thì mới làm dược
bạn phải chơi doll thì mới làm dược
Cho \(x+y+z=3\). Tìm GTNN của biểu thức sau:
\(\sqrt{2x^2+3xy+3y^2}+\sqrt{2y^2+3yz+z^2}+\sqrt{2z^2+2xz+x^2}\)
giải giùm, cần gấp!
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho x+y+z=3 TÌm gtnn:
A=\(\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3zx+2z^2}\)
cho ba so thuc khong am x,y,z thoa man x+y+z=3 Tinh GTNN cua A=can(2x^2+3xy+2y^2)+can(2y^2+3yz+2z^2)+can(2z^2+3zx+2x^2)
Cho x,y,z là các số thực dương thỏa mãn x+2y+3z=2
Tìm gía trị nhỏ nhất của S=\(\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Giups em hiểu vs ạ
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
tìm x, y biết rằng 2x2 + 2y2 +3x +3y -5xy +16 = 0.
Cho ba số thực dương \(x,y,z\) thỏa mãn: \(x+2y+3z=2\).
Tìm giá trị lớn nhất của biểu thức: \(S=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Cho \(x,y,z\)thỏa mãn \(x^2+y^2+z^2=3.\)
Tìm giá trị lớn nhất của biểu thức: \(S=\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)