Ta có \(-1\le cosx\le1\Rightarrow0\le cos^2x\le1\)
\(\Rightarrow0\le y\le3\)
\(\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=3\end{matrix}\right.\)
Ta có \(-1\le cosx\le1\Rightarrow0\le cos^2x\le1\)
\(\Rightarrow0\le y\le3\)
\(\Rightarrow\left\{{}\begin{matrix}y_{min}=0\\y_{max}=3\end{matrix}\right.\)
Biết tổng 2 số không âm là 82. Tìm GTLN và GTNN của tổng bình phương của chúng.
Tìm GTNN của hàm f(x)=2x.(5-3x)
1. Tìm GTNN m của hàm số f(x)= \(\dfrac{4}{x}\) + \(\dfrac{x}{1-x}\) với 1>x>0
2. Tìm GTNN m của hàm số f(x)= \(\dfrac{1}{x}\) + \(\dfrac{1}{1-x}\) với 0<x<1
Giúp mk với nhé thanks trước.
Tìm GTLN của hàm số sau: \(f\left(x\right)=\left(2-x\right)\left(x+3\right);-3\le x\le2\)
Cho 2 số thực x,y thỏa mãn y = \(\dfrac{2x}{x-3}\), x>3. Tìm GTNN của biểu thức P = 3xy + 2x + y. Mn giúp e với ạ, em thử biến đổi nhưng ko dùng được Cauchy mn ạ. :< Em cảm ơn mm
Cho x2+y2+xy=8. Tìm Gtln, Gtnn của P= x2+y2
B1:Cho 2 số thực dương x,y thỏa x4+y4+\(\dfrac{1}{xy}\)=xy+2
GTNN và GTLN của biểu thức P=x.y là bao nhiêu?
B2: Cho 2 số a,b ∈ (0;1) và thỏa mãn
(a3+b3)(a+b)-ab(a-1)(b-1)=0
tìm GTLN của P=a.b
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Cho x,y,z >0 thỏa mãn x+y+z=1
P=\(\sqrt{5x+4}+\sqrt{5y+4}+\sqrt{5z+4}\)
Tìm GTNN và GTLN của