\(A=\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|+6\)
Có: \(\left|3x+7\right|\ge0;\frac{13}{2}\left|3x+7\right|\ge0\)
\(\Rightarrow\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|+6\ge6\)
Dấu '=' xảy ra khi: \(\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|=0\)
\(\Leftrightarrow\left|3x+7\right|.\left(\frac{13}{2}+1\right)=0\)
\(\Leftrightarrow\left|3x+7\right|=0\Leftrightarrow3x+7=0\)
\(\Leftrightarrow x=-\frac{7}{3}\)
Vậy: \(Min_A=6\) tại \(x=-\frac{7}{3}\)