áp dụng BDT cô si ta có
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{100^2}{4}\)
vậy Max của \(xy=\frac{100^2}{4}=2500\)
dấu = xảy ra khi x=y=50
áp dụng BDT cô si ta có
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{100^2}{4}\)
vậy Max của \(xy=\frac{100^2}{4}=2500\)
dấu = xảy ra khi x=y=50
Tìm GTLN của tích xyz biết x, y, z là các số dương; z≥60 và x+y+z=100
Tìm GTNN và GTLN của tích xy với x, y là các số nguyên dương và x+y=2009
Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:
Bài 1,cho a,b,c là các số dương . Tìm GTNN của :
a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)
b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)
Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:
\(A=\frac{x+y}{xyz}\)
b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của
\(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)
Bài 4: a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)
b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)
Cho các số thực x ,y, z thỏa mãn : x\(\ge-1,y\ge-1,z\ge-4\)
Tìm GTLN : P = \(\frac{x^2}{x^2+y^2+4\left(xy+1\right)}+\frac{y^2-1}{z\left(3+z\right)+x+y+2}\)
Với x, y là các số dương và x + y + xy = 8
Tìm GTNN của biểu thức C = x² + y²
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Giả sử x, y, z là các số dương thỏa mãn điều kiện \(xy^2z^2+x^2z+y=3z^2\)
Tìm GTLN P =\(z^4 \over 1+z^4 (x^4+y^4)\)
cho x,y,z là các số dương thỏa mãn \(z\ge60;x+y+z=100\).Tìm GTLN của A= xyz
làm ơn giúp mk vssssssss