Theo BTĐ Bu - nhi - a - cốp - xki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2\) và \(b=3\)
Ta có: \(\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)
Với \(x^2+y^2=52\) thì \(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\)
\(\Rightarrow\) \(\left(2x+3y\right)^2\le13.13.4\)
\(\Rightarrow\) Giá trị tuyệt đối của \(2x+3y\le26\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Mặt khác, vì giá trị tuyệt đối của một số luôn không âm nên \(2x+3y\ge0\) hoặc \(2x+3y\le0\)
Do đó: \(x=4\) và \(y=6\) \(\left(t\text{/}m\right)\) ; \(x=-4\) và \(y=-6\) \(\left(t\text{/}m\right)\)
Vậy, \(Max\) \(A=26\) \(\Leftrightarrow\) \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)
Áp dụng bất đẳng thức bunhiakopski vào e ơi
(2x+3y)^2 <= (2^2+3^2)(x^2+y^2) Tự làm nốt nhé