Với \(x\ge1?\)
\(y=\frac{1.\sqrt{x-1}}{x}\le\frac{1+x-1}{2x}=\frac{1}{2}\)
\(y_{max}=\frac{1}{2}\) khi \(\sqrt{x-1}=1\Rightarrow x=2\)
Với \(x\ge1?\)
\(y=\frac{1.\sqrt{x-1}}{x}\le\frac{1+x-1}{2x}=\frac{1}{2}\)
\(y_{max}=\frac{1}{2}\) khi \(\sqrt{x-1}=1\Rightarrow x=2\)
Cho x, y, z là những số thực tùy ý. Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó :
\(y=\sqrt{x-1}+\sqrt{5-x}\)
Tìm GTLN của hàm số sau: \(f\left(x\right)=\left(2-x\right)\left(x+3\right);-3\le x\le2\)
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\sqrt{x+1}+\sqrt{3-x}\)
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
1. Tìm GTNN m của hàm số f(x)= \(\dfrac{4}{x}\) + \(\dfrac{x}{1-x}\) với 1>x>0
2. Tìm GTNN m của hàm số f(x)= \(\dfrac{1}{x}\) + \(\dfrac{1}{1-x}\) với 0<x<1
Giúp mk với nhé thanks trước.
Giai hệ phương trình
\(\begin{cases}1+xy+\sqrt{xy}=x\\\frac{1}{x\sqrt{x}}+y\sqrt{y}=\frac{1}{\sqrt{x}}+3\sqrt{y}\end{cases}\)
Với \(x,y\in R\)
Tìm giá trị nhỏ nhất của biểu thức sau \(A=x\sqrt{y+1}+y\sqrt{x+1}\), với \(x^2+y^2=1\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+z^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
tìm giá trị nhỏ nhất và gtln của hàm số y=\(\sqrt{x+3}\) + \(\sqrt{6-x}\)