\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)
Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
=> \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)
=> \(-Q=\left(x^2+x\right)^2-25\)
Có: \(\left(x^2+x\right)^2\ge0\forall x\)
=> \(-Q\ge-25\forall x\)
=> \(Q\le25\)
DẤU "=" XẢY RA <=> \(\left(x^2+x\right)^2=0\)
<=> \(x^2+x=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
VẬY Q MAX = 25 <=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)