Bài làm:
Ta có: \(6x-x^2-5\)
\(=-\left(x^2-6x+9\right)+4\)
\(=-\left(x-3\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(Max=4\Leftrightarrow x=3\)
\(6x-x^2-5=-\left(x-3\right)^2+4\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-3\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy GTLN của bt trên = 4 <=> x = 3
6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy GTLN của biểu thức = 4 <=> x = 3