Câu 14(1,5 điểm): a) Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau: y = - 2x + 5 ; y = x + 2 b) Tìm tọa độ giao điểm A của đường thẳng y = - 2x + 5 và y=x+2. c) Tính góc tạo bởi đường thẳng y = x + 2y với trục Ox. d) Xác định đường thẳng y = ax + b đi qua điểm A và song song với đường thẳng y = - 3x - 1
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
cho hàm số y = x^2 - 2x - 3(P) và y = x - 3(d). Gọi A và B theo thứ tự là giao điểm của (d) và (P). Tìm tọa độ điểm M thuộc trục đối xứng của (P) sao cho | MA + MB | đạt giá trị lớn nhất
a. Xét dấu của biểu thức f(x) = 2x(x+2)-(x+2)(x+1)
b. Lập bảng biến thiên và vẽ trong cùng một hệ tọa độ vuông góc đồ thị của các hàm số : y = 2x(x+2) ( C1 ) và y = (x+2)(x+1)(C2)
Tính tọa độ giao điểm A và B của (C1) và (C2).
c. Tính các hệ số a, b, c để hàm số y = ax2 + bx + c có giá trị lớn nhất bằng 8 và độ thị của nó đi qua A và B.
Tọa độ giao điểm của đồ thị hai hàm số y = x2 - 2x +3 và y = x2 + 2x -1
A.(1;2) B.(0;4) C.(-1;6) D.(-1;-2 )
Tìm tất cả các giá trị tham số m để hai đồ thị hàm số \(y=-x^2-2x+3\) và \(y=x^2-m\) có điểm chung
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
Câu 35. Cho hàm số f(x) ={∣∣∣−2(x−3)√x2−1∣∣∣|−2(x−3)x2−1| −1≤x<1x≥1−1≤x<1x≥1 Gía trị của f(-1), f(1) lần lượt là.
Câu 36. Đồ thị hàm số y={2x+1x2−3khix≤2khix>22x+1x2−3khix≤2khix>2 đi qua điểm có tọa độ là.
Câu 37. Cho hàm số y={−2x+1khix≤−3x+72khix>−3−2x+1khix≤−3x+72khix>−3 Biết f(x0) = 5 thì x0 là:
Câu 38. Hàm số y=x−2(x−2)(x−1)điểmx−2(x−2)(x−1)điểm nào thuộc đồ thị.