Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Tìm giá trị của tham số m để hàm số f ( x ) = x 2 + 3 x + 2 x 2 - 1 k h i x < - 1 m x + 2 k h i x ≥ - 1 liên tục tại x=-1
A. - 3 2
B. 5 2
C. - 5 2
D. 3 2
Tìm giá trị cực đại của tham số m để hàm số f x = x + 1 khi x > 2 x 2 + m khi x ≤ 2 liên tục tại điểm x=2?
A. m= -1.
B. m= 0.
C. m= 3.
D. m= -6.
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ ℝ . Biết f 0 = 1 và 2 - x f x - f ' x = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình f x = m có hai nghiệm thực phân biệt.
A. m < e 2
B. 0 < m < e 2
C. 0 < m ≤ e 2
D. m > e 2
Cho hàm số f x = 2 x + 1 − 1 x k h i x ≠ 0 x 2 − 2 m + 2 k h i x = 0 . Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x=0
A. m = 2
B. m = 3
C. m = 0
D. m = 1
Tìm giá trị thực của tham số m để hàm số f x = x 3 - x 2 + 2 x - 2 x - 1 , x ≠ 1 3 x + m , x = 1 liên tục tại x = 1
A. m = 0
B. m = 6
C. m = 4
D. m = 2
Cho hàm số f x = x 2 - x - 2 x - 2 k h i x ≠ 2 2 m + 1 k h i x = 2 . Tìm giá trị của tham số m để hàm số liên tục tại x = 2
A. m = 0
B. m = 1
C. m = 2
D. m = 3