Đáp án D
Tính đạo hàm của hàm số đã cho rồi cho nó bằng 0, ta suy ra được ba điểm cực trị là: (1, 5), (1, 7), và (-1, 7).
GTNN là 5
Chọn phương án D.
Đáp án D
Tính đạo hàm của hàm số đã cho rồi cho nó bằng 0, ta suy ra được ba điểm cực trị là: (1, 5), (1, 7), và (-1, 7).
GTNN là 5
Chọn phương án D.
Cho hàm số y = x 2 + 2 x + a - 4 . Tìm giá trị a để giá trị lớn nhất của hàm số trên đoạn [ -2;1 ] đạt giá trị nhỏ nhất.
A. a = 3
B. a = 2
C. a = 1
D. Giá trị khác
Cho hàm số y = x 2 + 2 x + a - 4 Tìm giá trị của a để gá trị lớn nhất của hàm số trên đoạn [-2;1] đát giá trị nhỏ nhất.
A. a = 3
B. a = 2
C. a = 1
D. a = 0
Tìm m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn - 2 ; 1 đạt giá trị nhỏ nhất. Giá trị của m là
A. 5
B. 4
C. 1
D. 3
Tìm giá trị nhỏ nhất của hàm số y = x - 2 + 4 - x trên đoạn [2;4].
A. m i n 2 ; 4 y = 3 2
B. m i n 2 ; 4 y = 3 2
C. m i n 2 ; 4 y = 2
D. m i n 2 ; 4 y = 2
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [-2;1] thỏa mãn f(0)=1 và f x 2 . f ' x = 3 x 2 + 4 x + 2 Giá trị lớn nhất của hàm số y=f(x) trên đoạn [-2;1] là
A. 2 16 3
B. 18 3
C. 16 3
D. 2 18 3
Cho hàm số y = f x có đạo hàm liên tục trên đoạn [ -2;1] thỏa mãn f 0 = 1 và f x 2 . f ' x = 3 x 2 + 4 x + 2 Giá trị lớn nhất của hàm số y = f x trên đoạn [ - 2 ; 1 ] là:
A. 2 16 3
B. 18 3
C. 16 3
D. 2 18 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x ) = x 2 + 5 x - 2 trên đoạn [– 2;1]. Tính T = M + 2m
A. c
B. T = - 10
C. T = - 21 2
D. T = - 13 2
Tìm giá trị nhỏ nhất của hàm số y = 2 x + 1 1 − x trên đoạn 2 ; 3
A.1
B.-2
C.0
D.-5
Tìm giá trị nhỏ nhất của hàm số y = 2 x + 1 1 - x trên đoạn 2 ; 3
A. m i n [ 2 ; 3 ] y = 1
B. m i n [ 2 ; 3 ] y = - 2
C. m i n [ 2 ; 3 ] y = 0
D. m i n [ 2 ; 3 ] y = - 5