Cho hàm số f(x) = |2x − m|. Tìm m để giá trị lớn nhất của f(x) trên [1; 2] đạt giá trị nhỏ nhất.
A. m = −3
B. m = 2
C. m = 3
D. m = −2
Tìm giá trị nhỏ nhất của hàm số sau : \(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2},x\in\left[0;\sqrt{3}\right]\)
Tìm giá trị nhỏ nhất của hàm số f(x)=x+\(\frac{1}{x}\) với x\(\ge\)2
Cho hàm số f(x) = \(\left\{{}\begin{matrix}-x+1khix< -2\\2x+7khix\ge-2\end{matrix}\right.\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số trên
b) Tìm m để phương trình f(x)=m có 2 nghiệm phân biệt
c) Tìm giá trị lớn nhất, nhỏ nhất của hàm số trên [-3; 1]
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+2\text{/}\left(x-1\right)\) với \(x>1\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Cho hàm số f(x) = x 2 + 2x − 3
Xét các mệnh đề sau:
i) f(x − 1) = x 2 − 4
ii) Hàm số đã cho đồng biến trên (−1; + ∞ )
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình f(x) = m có nghiệm khi m ≥ −4
Số mệnh đề đúng là:
A. 1
B. 2
C. 3
D. 4
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=\frac{3}{x}+\frac{27}{1-x}\)với \(x\in\left(0;1\right)\)
Tìm giá trị nhỏ nhất của hàm số f(x) =\(\frac{9}{2x-4}\) - \(\frac{32}{x}\)\(\forall\)x\(\in\) (0;2)