Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Nguyễn

tìm giá trị nhỏ nhất của F= a^2 + ab + b^2 - 3a - 3b + 3

Đinh Đức Hùng
21 tháng 9 2017 lúc 12:07

\(F=a^2+ab+b^2-3a-3b+3\)

\(=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(ab-a-b+1\right)\)

\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)

\(=\left[\left(a-1\right)^2+\left(a-1\right)\left(b-1\right)+\frac{1}{4}\left(b-1\right)^2\right]+\frac{3}{4}\left(b-1\right)^2\)

\(=\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2+\frac{3}{4}\left(b-1\right)^2\)

Ta thấy \(\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2\ge0\) và \(\frac{3}{4}\left(b-1\right)^2\ge0\) với mọi a;b

Nên \(A=\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\forall a;b\) có GTNN là 0

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

trần hoàng anh
1 tháng 4 2018 lúc 6:50

\(4F=4a^2+4ab+4b^2-12a-12b+12\)

\(=\left(4a^2+b^2+4+4ab-12a-6b\right)+\left(3b^2-6b+3\right)\)

\(=\left(2a+b-2\right)^2+3\left(b-1\right)^2\)

vì \(\left(2a+b-2\right)^2\ge0\forall a,b\)

\(3\left(b-1\right)^2\ge0\forall b\)

\(\Rightarrow4F\ge0\forall a,b\Rightarrow F\ge0\forall a,b\)

\(\Rightarrow GTNN\)của F là 0 \(\Leftrightarrow\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)

siuu
29 tháng 6 2023 lúc 13:09

=(�2−2�+1)+(�2−2�+1)+(��−�−�+1)

=(�−1)2+(�−1)2+(�−1)(�−1)

=[(�−1)2+(�−1)(�−1)+14(�−1)2]+34(�−1)2

=[(�−1)+12(�−1)]2+34(�−1)2

Ta thấy [(�−1)+12(�−1)]2≥0 và 34(�−1)2≥0 với mọi a;b

Nên �=[(�−1)+12(�−1)]2+34(�−1)2≥0∀�;� có GTNN là 0

Dấu "=" xảy ra ⇔�=�=1

 


Các câu hỏi tương tự
siuu
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
hacker nỏ
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết
nguyễn viruss
Xem chi tiết
Nhìn cái lol
Xem chi tiết
Hiền Thương
Xem chi tiết
Trần Nguyễn Tanh Ngọc
Xem chi tiết