Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hacker nỏ

Cho a,b,c >0 thoả mãn ab+bc+ca=3. Tìm giá trị nhỏ nhất của 

P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)

Trần Tuấn Hoàng
21 tháng 5 2022 lúc 10:51

Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)

\(\Rightarrow a+b+c\ge3\)

Phân tích và áp dụng BĐT AM-GM:

\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)

Tương tự:

\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)

\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)

Cộng các vế của các BĐT ta được:

\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)

\(P=6\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=6\)

 


Các câu hỏi tương tự
mienmien
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
tnt
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Thế Quang
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Hùng Chu
Xem chi tiết
Minh Hiếu
Xem chi tiết