Đk: \(2011\le x\le2013\).
Với a,b >0 có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
<=> \(a^2+2ab+b^2\le2a^2+2b^2\)
<=> \(0\le a^2-2ab+b^2\)
<=> \(0\le\left(a-b\right)^2\) (luôn đúng)
Dấu "=" xảy ra <=>a=b>0
Áp dụng bđt trên có: \(\sqrt{x-2011}+\sqrt{2013-x}\le\sqrt{2\left(x-2011+2013-x\right)}\)
=> \(\frac{4026}{\sqrt{x-2011}+\sqrt{2013-x}}\ge\frac{4026}{\sqrt{2.2}}=2013\)
<=> \(Q\ge2013\)
Dấu "=" xảy ra <=>\(\sqrt{x-2011}=\sqrt{2013-x}\)
<=>x=2012(t/m)
Vậy minQ=2013 <=>x=2012