Cho biểu thức A = x - 2\(\sqrt{x+2}\)
a) Đặt y = \(\sqrt{x+2}\). Hãy biểu thị A theo y.
b) Tìm giá trị nhỏ nhất của A.
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
Tìm giá trị nhỏ nhất của biểu thức
\(B=\sqrt{x^3+2\left(1+\sqrt{x^3+1}\right)}+\sqrt{x^3+2\left(1-\sqrt{x^3+1}\right)}\)
Cho hai biểu thức: \(P=\frac{x+3}{\sqrt{x}-2}\) và \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\) với \(x>0,x\ne4\)
a) Tính giá trị của biểu thức P khi x = 9
b) Rút gọn biểu thức Q
c) Tìm giá tri của x để biểu thức \(\frac{P}{Q}\) đạt giá trị nhỏ nhất
Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Cho P= \(\dfrac{x^2+2xy+9y^2}{x+3x-2\sqrt{xy}}-2\sqrt{xy}\left(x,y>0\right)\) a, rút gọn P b, tìm điều kiện của x, y để biểu thức \(\dfrac{P}{\sqrt{xy}+y}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Cho biểu thức P=\(\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1-\sqrt{x}}{\sqrt{x}}:1+\dfrac{2}{\sqrt{x}}\)với x nhỏ hơn 0
1.Rút gọn P
2.Tính giá trị cuả P biết x=2019 -2\(\sqrt{2018}\)
giả sử x,y\(\ge0\) thỏa mãn\(x^3+y^3+xy=x^2+y.\)Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\dfrac{1+\sqrt{x}}{2+\sqrt{y}}+\dfrac{2+\sqrt{x}}{1+\sqrt{y}}\)
b)tìm giá trị nguyên của x để A có giá trị nguyên