\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)
\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)
\(=x^2\left(x-1\right)^2+\left(x-1\right)^2\)
\(=\left(x^2+1\right)\left(x-1\right)^2\)
\(\left(x-1\right)^2>=0\forall x\)
\(x^2+1>=1\forall x\)
Do đó: \(\left(x-1\right)^2\cdot\left(x^2+1\right)>=0\forall x\)
Dấu = xảy ra khi x=1