Lời giải:
$A=\frac{x}{3}+5+\frac{12}{x}$
Áp dụng BĐT Cô-si cho các số dương:
$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$
$\Rightarrow A\geq 4+5=9$
Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$
Lời giải:
$A=\frac{x}{3}+5+\frac{12}{x}$
Áp dụng BĐT Cô-si cho các số dương:
$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$
$\Rightarrow A\geq 4+5=9$
Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$
Tìm giá trị lớn nhất của biểu thức sau:
\(P=\dfrac{5x+7}{\sqrt{3x-2}}\) với \(x>\dfrac{2}{3}\)
B1 tìm giá trị lớn nhất của:
a) y=|x|/(x2 +3x+9)
b)x2/(x2+1)3
B2 tìm giá trị nhỏ nhất của P=3a2+5b2 với 2a-3b=7
Giá trị nhỏ nhất của hàm số f x = 2 x + 3 x với x > 0 là:
A. 4 3
B. 6
C. 2 3
D. 2 6
Tìm giá trị nhỏ nhất của biểu thức :
\(f\left(x\right)=\dfrac{2}{x}+\dfrac{4}{2-x}-1vớix\in\left(0;2\right)\)
Tìm giá trị nhỏ nhất của biểu thức g x = x 2 + 3 x với x ∈ ℝ .
A. - 9 4
B. - 3 2
C. 0
D. 3 2
Tìm giá trị nhỏ nhất của hàm số f ( x ) biết rằng f ( x + 2 ) = x 2 − 3 x + 2
A. - 1 4
B. 1 4
C. 1 2
D. 0
Cho đồ thị: ( C ) : y = 3 x - 2 - 2 x - 6 Tìm giá trị lớn nhất và nhỏ nhất của hàm số với -3≤ x≤ 4
A. max y= 4; min y=2
B. max y= 2; min y= -4
C.max y=4; min y=-2
D. max y=2; min y= -2
Tìm giá trị nhỏ nhất của hàm số sau : \(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2},x\in\left[0;\sqrt{3}\right]\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?