E=\(\left(4x^4+4x^2+1\right)-5\)
=\(\left(2x^2+1\right)^2-5\)
ta thấy \(\left(2x^2+1\right)^2\)>hoặc bằng 0 với mọi x
=>\(\left(2x^2+1\right)^2-5\)>hoặc bằng -5 với mọi x
Dấu "=" xảy ra khi 2x2+1=0<=>2x2=-1(vô lí)
VẬY ........................................
\(E=4x^4+4x^2-4\)
\(E=\left(2x^2\right)^2+4x^2+1-5\)
\(E=\left(2x^2+1\right)^2-5\)
Vì \(2x^2\ge0\Rightarrow2x^2+1\ge1\)
\(\Rightarrow\left(2x^2+1\right)^2-5\ge-4\)
Dấu = xảy ra khi \(2x^2=0\Rightarrow x=0\)
Vậy Min A = -4 khi x = 0