Với Online Math
Học mà như chơi, chơi mà vẫn học
Với Online Math
Học mà như chơi, chơi mà vẫn học
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
1.cho a,b,c là các số dương thảo man: a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
Q=\(\dfrac{a\left(b+c\right)}{a+1}+\dfrac{b\left(c+a\right)}{b+1}+\dfrac{c\left(a+b\right)}{c+1}\)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
���+���+���
Với a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu thức
P= 6(ab+bc+ca) + a(a-b)^2 + b(b-c)^2 + c(c-a)^2
cho a,b,c >0 và 1/1+a +1/1+b +1/1+c =2 tìm giá trị lớn nhất của abc
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
1> với 1/3<x<1/2, tìm giá trị lớn nhất của biểu thức P= (1-2x)(3x-1)
2> Với các số thực dương a,b thỏa mãn ab=2, tìm giá trị nhỏ nhất của S = a + 4b
3> Với các số thực dương a,b thỏa mãn (a+1)(b+1) = 4, chứng minh rằng a+b lớn hơn bằng 2
4> Với các số thực dương a,b thỏa mãn a^2 b ( a bình phương b ) = 4, chứng minh rằng a+b lớn hơn bằng 3
5> Với 0 < x < 1/2 , tìm giá trị lớn nhất của S= x(1-2x)^2
cho a,b,c là 3 số dương thỏa man điều kiện: \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}=2\)
Tìm giá trị lớn nhất của tích (a+b)(b+c)(c+a)
Cho biểu thức K = ab + 4ac – 4bc, với a, b, c là các số thực không âm thỏa mãn: a + b + 2c = 1
1, Chứng minh K lớn hơn hoặc bằng – 1/2
2, Tìm giá trị lớn nhất của biểu thức K