với x,y,z là số thực đôi một khác nhau, hãy tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{2x-y}{x-y}\right)^2+\left(\frac{2y-z}{y-z}\right)^2+\left(\frac{2z-x}{z-x}\right)^2\)
Cho các số x, y, z thỏa mãn x+ y+ xyz= z. Giá trị lớn nhất của biểu thức P=\(\dfrac{2x}{\sqrt{\left(x^2+1\right)^3}}+\dfrac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho \(\left\{{}\begin{matrix}x>-1\\y< 2\\z>-\dfrac{1}{2}\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức:
\(F=\left(1+x\right)\left(2-y\right)\left(1+2z\right)\).
Tìm giá trị nhỏ nhất của biểu thức \(P=-6-\frac{24}{2\left|x-2y\right|+3\left|2x+1\right|+6}.\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho các số thực dương x,y,z thỏa mãn x + y + xyz = z. Tìm giá trị lớn nhất của biểu thức \(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}..\)
g
Với x,y,z là những số thực dương ,hãy tìm giá trị lớn nhất của biểu thức :
\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho hai số thực x,y thỏa mãn \(x^{^2}+y^2=2x+4y+4.\). Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt{x^2+y^2+4x+2y+5}+\sqrt{6\left(x^2+y^2-4x-6y+13\right)}.\)
Cho x,y,z là các số thực dương thỏa mãn x+y=z-1. Tìm giá trị lớn nhất của biểu thức: \(P=\frac{x^3y^3}{\left(x+1\right)^3\left(y+1\right)^3\left(x+y\right)^2}\)