Pt vô nghiệm khi:
\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)
\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)
Vậy pt đã cho vô nghiệm với mọi m
Pt vô nghiệm khi:
\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)
\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)
Vậy pt đã cho vô nghiệm với mọi m
Tìm các giá trị của tham số m để phương trình sau vô nghiệm (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0
Bài 1: Tìm các giá trị của tham số m để mỗi phương trình sau có 2 nghiệm trái dấu:
\(a,\left(m^2-1\right)x^2+\left(m+3\right)x+\left(m^2+m\right)=0\)
\(b,x^2-\left(m^2+m-2\right)x+m^2+m-5=0\)
Bài 2: Tìm các giá trị của tham số m để mỗi phương trình sau có 2 nghiệm dương phân biệt:
\(a,x^2-2x+m^2+m+3=0\)
\(b,\left(m^2+m+1\right)x^2+\left(2m-3\right)x+m-5=0\)
\(c,x^2-6mx+2-2m+9m^2=0\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2+2m=0\) (với m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2(x1<x2)
thoa man: \(\left|x1\right|=3\left|x2\right|\)
giúp em câu b với
Cho phương trình \(mx^2+\left(2m-2\right)x+m-1=0\) ,(1) ( với m là tham số )
a) Định m để phương trình ( 1 ) có hai nghiệm phân biệt.
b) Gọi 1 2 x x; là hai nghiệm của phương trình ( 1 ). Chứng minh rằng giá trị biểu thức \(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1\) luôn là hằng số.
Với giá trị nào của tham số m thì phương trình \(\left(m^2-1\right)x+m^2-2m-3=0\) vô nghiệm ?
A. \(m=1\) B. \(m=-1\) C. \(m=-2\) D. \(m=-3\)
Tìm các giá trị của tham số m để bất phương trình sau luôn đúng: \(\dfrac{4x^2+4\left(m-2\right)x+22-m}{x^2+x+12}>0\)
có bao nhiêu giá trị nguyên của tham số m để phương trình
\(\left(x^2+\frac{1}{x^2}\right)-2m\left(x+\frac{1}{x}\right)+1=0\)0
có đúng 4 nghiệm
1.tìm m để phương trình \(x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(x\ne0\right)\) có nghiệm
2. cho hàm số y=f(x)=\(x^2-4x+3\)
tìmcác giá trị nguyên của m để
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Tìm tất cả các giá trị của tham số m để hệ bất phương trình sau có nghiệm.
x 2 - 3 x + 2 ≤ 0 m x 2 - 2 ( 2 m + 1 ) + 5 m + 3 ≥ 0