Cho pt \(x^2-(2m+3)x+m=0\). Gọi \(x_1,x_2\) là các nghiệm của pt. Tìm giá trị của m để \(x^2_1+x^2_2\) đạt GTNN
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Biết cặp số (x; y) là nghiệm của hệ x + y = 2 m x 2 + y 2 = 2 m + 2 . Tìm giá trị của m để P = xy – 3 (x + y) đạt giá trị nhỏ nhất.
A. m = - 7 2
B. m = −7
C. m = 7
D. m = 7 2
Z=2m+(m-b)i tìm m để |z| đạt giá trị nhỏ nhất
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
x2 - (m+1)x + m2 - 2m +2 =0
a)Tìm các giá trị của m để pt vô nghiệm, có nghiệm kép, có 2 nghiệm
b) Tìm m để x1+x2 đạt giá trị bé nhất, lớn nhất
Tìm giá trị của m để biểu thức sau đạt GTNN. Tìm GTNN đó:
\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2\)
Cho phương trình x 2 − ( 2 m + 5 ) x + 2 m + 1 = 0 (1), với x là ẩn, m là tham số.
a. Giải phương trình (1) khi m= - 1 2
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt x 1 , x 2 sao cho biểu thức P = x 1 − x 2 đạt giá trị nhỏ nhất.
a)\(\sqrt{x-4}-2\) tìm x để đạt giá trị nhỏ nhất , tìm GTNN đó