Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tập các giá trị thực của tham số m để phương trình 4 ( 2 + 1 ) x + 2 - 1 x - m = 0 có đúng hai nghiệm âm phân biệt.
A. (2;4)
B. (3;5)
C. (4;5)
D. (5;6)
Tìm tất cả các giá trị thực của m để bất phương trình m.4x + 4(m - 1) 2x + m – 1 = 0 nghiệm đúng với mọi x.
A. 0 < m < 4
B. 0 < m < 1
C. 1 < m < 4
D. m ≥ 1
Tìm điều kiện của m để phương trình: sin 6 x + 4 cos 6 x = m có nghiệm.
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho hàm số f(x) liên tục trên R có bảng biến thiên dưới đây. Tìm điều kiện của m để phương trình |f(x)| = m có 4 nghiệm phân biệt
Tìm điều kiện của m để bất phương trình 9 x - m + 1 . 3 x + m < 0 có nghiệm
A. m>0
B. 0 < m ≠ 1
C. m<1
D. m ≠ 1
Cho phương trình m - 1 log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 ( x - 2 ) + 4 m - 4 = 0 (với m là tham số). Gọi S = a ; b là tập hợp các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a + b .
A. 7 3 .
B. - 2 3 .
C. - 3 .
D. 1034 237 .
Cho phương trình 4 x - ( m + 1 ) . 2 x + m = 0 . Điều kiện của m để phương trình có đúng 3 nghiệm phân biệt là:
Có bao nhiêu giá trị nguyên của m để phương trình \(9.3^{2x}-m\left(4.\sqrt[4]{x^2+2x+1}+3m+3\right)3^x+1=0\)có 3 nghiệm thực phân biệt