Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quynh Anh Quach

Tìm đa thức P(x) có hệ số là các số nguyên không âm, không vượt quá 8, thoả mãn P(8)=1995

Mr Lazy
2 tháng 7 2015 lúc 12:13

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
\(P\left(x\right)=ax^3+bx^2+cx+d=ax^3+g\left(x\right)\text{ với }g\left(x\right)=bx^2+cx+d\)
Ta có:\(0\le G\left(8\right)\le8.8^2+8.8+8=584\)

\(1995=P\left(8\right)=a.8^3+G\left(8\right)\le a.8^3+584\)

\(a.8^3+584\ge1995\Rightarrow a\ge\frac{1995-584}{8^3}\approx2,75\Rightarrow a\ge3\)

Mặt khác nếu a ≥ 4 thì \(P\left(8\right)\ge4.8^3=2048>1995\) => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

\(P\left(x\right)=3x^3+bx^2+cx+d\)

\(1995=P\left(8\right)=3.8^3+G\left(8\right)\Rightarrow G\left(8\right)=495\)

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

\(\)\(495=G\left(8\right)=b.8^2+c.8+d\le a.8^2+8.8+8\Rightarrow b\ge6,6\Rightarrow b\ge7\)

Nếu b = 8 thì \(G\left(8\right)\ge8.8^2=512>495\) => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

\(P\left(x\right)=3x^3+7x^2+cx+d\)

\(1995=P\left(8\right)=3.8^3+7.8^2+8c+d\Rightarrow8c+d=11\)

Nếu c ≥ 2 thì \(8c+d\ge8.2=16>11\) => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì \(8.1+d=11\Rightarrow d=3\)
Đa thức \(P\left(x\right)=3x^3+7x^2+x+3\)
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: \(P\left(x\right)=3x^3+7x^2+x+3\)

Thử lại thấy đúng

 


Các câu hỏi tương tự
allain top
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
allain top
Xem chi tiết
nguyenkhanhlinh
Xem chi tiết
Dương Thị Mỹ Hạnh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Dun Con
Xem chi tiết
Trần Quang Minh
Xem chi tiết
Phung Thi Thanh Thao
Xem chi tiết