Tìm cặp số nguyên x ,y
x2 -2xy+ 5y2 = y-1
Tìm tất cả các cặp số nguyên x,y thoả mãn: 2x2 + 5y2 - 4(xy+1) = 7
Cho \(x,y,z\)là các số thực dương thỏa mãn \(x^2+y^2+z^2=3.\)
Tìm giá trị lớn nhất của biểu thức: \(P=\frac{x^2+3xy+y^2}{\sqrt{6x^2+8xy+11y^2}}+\frac{y^2+3yz+z^2}{\sqrt{6y^2+8yz+11z^2}}+\frac{z^2+3zx+x^2}{\sqrt{6z^2+8zx+11x^2}}\)
tìm cặp số nguyên x, y thỏa mãn `x^2 +xy-6y^2 +x+13y=17`
Giải chi tiết hộ mk....
Tìm các cặp số thực (x;y) thoả mãn điều kiện
a)\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+26xy+6x^2}=x^2+y^2+32\)
b)\(\sqrt{19x^2+2xy+4y^2+\sqrt{19y^2+2yx+4x^2}}+32=2\sqrt{xy}+16\left(\sqrt{x}+\sqrt{y}\right)\)
tìm các cặp số nguyên (x;y) thỏa mãn: \(x^2\)-5xy +6y^2+1=0
Tìm tất cả các cặp số nguyên thỏa mãn
\(\left(x-2019\right)^2=y^4-6y^3+11y^2-6y\)
cho 2 số x,y t/m: \(\left(x+y\right)^2+6x+6y+y^2+5=0\)
tìm GTLN của P=x+y+2
cho 2 số x,y t/m: \(\left(x+y\right)^2+6x+6y+y^2+5=0\)
tìm GTLN của P=x+y+2