Ta có x : y : z = 3 : 4 : 5
<=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó 2x2 + 2y2 - 3z2 = -100
<=> 2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100
<=> 18k2 + 32k2 - 75k2 = -100
<=> -25k2 = -100
<=> k2 = 4
<=> k = \(\pm2\)
Khi k = 2 => x = 6 ; y = 8 ; z = 10
Khi k = -2 => x = -6 ; y = -8 ; z = - 10
Vậy các cặp (x;y;z) thỏa mãn là (6;8;10);(-6;-8;-10)