Lời giải:
Áp dụng TCDTSBN:
$\frac{6}{x+y+z}=\frac{x+y+7}{z}=\frac{y+z+2}{x}=\frac{x+z+5}{y}=\frac{x+y+7+y+z+2+x+z+5}{z+x+y}$
$=\frac{2(x+y+z)+14}{x+y+z}=2+\frac{14}{x+y+z}$
$\Rightarrow \frac{-8}{x+y+z}=2\Rightarrow x+y+z=-4$
Khi đó:
$\frac{x+y+7}{z}=\frac{y+z+2}{x}=\frac{x+z+5}{y}=\frac{6}{x+y+z}=\frac{6}{-4}=\frac{-3}{2}=-1,5$
$\Rightarrow \frac{x+y+z+7}{z}=\frac{x+y+z+2}{x}=\frac{x+y+z+5}{y}=-0,5$
$\Rightarrow \frac{-4+7}{z}=\frac{-4+2}{x}=\frac{-4+5}{y}=-0,5$
$\Rightarrow z=-6; x=4; y=-2$