Lời giải:
PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$
$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$
$\Rightarrow 2z^2\vdots 3$
$\Rightarrow z\vdots 3$
Lại có:
$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$
$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)
Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$
Nếu $z=0$ thì:
$3(x-3)^2+6y^2=33$
$\Leftrightarrow (x-3)^2+2y^2=11$
$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$
$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$
Thay từng giá trị vào tìm $x$.
Nếu $z=\pm 3$ thì:
$3(x-3)^2+15y^2=15$
$\Rightarrow 15y^2\leq 15$
$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$
$\Rightarrow y\in \left\{\pm 1; 0\right\}$
Thay từng giá trị vào tìm $x$.