cho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn a+2b2 - 2 là lũy thừa của một số nguyên tố khác 13, và b+2a2-2 chia hết cho a+2b2 - 2 chứng minh răng 2a+3 là số chính phươngcho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn a+2b2 - 2 là lũy thừa của một số nguyên tố khác 13, và b+2a2-2 chia hết cho a+2b2 - 2 chứng minh răng 2a+3 là số chính phương
Cho a+b+c=0 . CM các biểu thức sau không phụ thuộc vào biến số
A=((4bc-a2)/(bc+2a2))×((4ca-b2)/(ca+2b2))×((4ab-c2)/(ab+2c2))
Cho các số x, y, z tỉ lệ với các số a, b, c. Khi đó ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) bằng
A. ax + 2by + 3cz
B. 2 a x + b y + 3 c z 2
C. 2 a x + 3 b y + c z 2
D. a x + 2 b y + 3 c z 2
tìm 4 số tự nhiên a1<a2<a3<a4 sao cho tất cả các số d1=a1-a3,d2=a3-a2,d3=a2-a1,d4=a4-a2,d5=a3-a1,d6=a4-a1 đều là số nguyên tố trong đó có thể có các số nguyên tố bằng nhau
tìm bốn số tự nhiên a1<a2<a3<a4 sao cho tất cả số d1=a4-a3; d2=a3-a2; d3= a2-a1; d4= a4-a2; d5=a3-a2; d6=a4-a3 đều là các số nguyên tố, trong đó có thể co các số nguyên tố bằng nhau
mk cần gấp ai nhanh trả lời sẽ đc 3 tick nha
a)Tìm x,y,z biết :
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=6\\x^3+y^3+z^3=6\end{matrix}\right.\)
b)Tìm các số nguyên x,y t/m:
2x2+\(\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích x.y có GTLN
c)Cho a+b+c=0 và a2+b2+c2=14. Tính GT của bt M=a4+b4+c4
1)CMR nếu n thuộc N* và 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
2)Tìm x,y biết
a)x+y=xy
b)p(x+y)=xy với p nguyên tố
3)Tìm tất cả các tam giác vuông có cạnh là số nguyên tố và có diện tích bằng chu vi của nó
a)chứng minh rằng nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b)Nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Chú ý rằng vì x + a 2 ≥ 0 với mọi giá trị của x và x + a 2 = 0 khi x = -a nên x + a 2 + b ≥ 0 với mọi giá trị của x và x + a 2 + b = b khi x = -a .Áp dụng điều này giải các bài tập sau:
Rút gọn rồi tìm giá trị của x để biểu thức: x + 2 2 x . 1 - x 2 x + 2 - x 2 + 6 x + 4 x có giá trị lớn nhất. Tìm giá trị lớn nhất ấy.