Tìm tất cả các hàm số \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn:
\(f\left(x+yf\left(x\right)\right)=f\left(x\right)+xf\left(y\right),\forall x,y\inℝ^+\)
Tìm tất cả các hàm số \(f:\left(0;+\infty\right)\rightarrow\left(0;+\infty\right)\) thỏa mãn
\(f\left(x+f\left(y\right)+y\right)=f\left(2x\right)+f\left(y\right),\forall x,y\in\left(0;+\infty\right)\)
Tìm tất cả hàm số \(f:R^+\rightarrow R^+\) thoả mãn:
\(f\left(x^2+y^2\right)=f\left(xy\right),\forall x,y\in R^+\)
Giúp với ạ.
Tìm tất cả hàm số \(f:R\backslash\left\{0,1\right\}\rightarrow R\) thoả mãn
\(f\left(\dfrac{1}{1-x}\right)+f\left(\dfrac{x-1}{x}\right)=x+1-\dfrac{1}{x}\) , \(\forall x\in R\backslash\left\{0,1\right\}\)
1. Chứng minh rằng mọi hàm \(f:ℝ\rightarrowℝ\) thỏa mãn \(f\left(xy+x+y\right)=f\left(xy\right)+f\left(x\right)+f\left(y\right),\forall x,y\inℝ\)
2. Xác định tất cả các hàm số \(f\) liên tục trên \(ℝ\) thỏa mãn điều kiện \(f\left(2x-y\right)=2f\left(x\right)-f\left(y\right),\forall x,y\inℝ\)
1. Tìm tất cả các giá trị của \(a\) sao cho tồn tại duy nhất một hàm \(f:ℝ\rightarrowℝ\) thỏa mãn điều kiện \(f\left(x^2+y+f\left(y\right)\right)=\left[f\left(x\right)\right]^2+ay,\forall x,y\inℝ\)
2. Tìm tất cả các hàm \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn \(f\left(x\right).f\left(y\right)=f\left(x+yf\left(x\right)\right),\forall x,y\inℝ^+\)
Giúp mình 2 bài này với, ngày mai là mình phải nộp rồi, cảm ơn các bạn trước nhé.
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)trên đoạn [0;1]
Tìm tất cả các hàm \(f:R\rightarrow R\)thõa
\(f\left(x\right)+f\left(y\right)=f\left(x+y\right)-xy-1\)và \(f\left(1\right)=1\)
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=\frac{3}{x}+\frac{27}{1-x}\)với \(x\in\left(0;1\right)\)