Giới hạn lim x → 2 + x 2 - 2 x 2 - x bằng - m , m 0. Giá trị
biểu thức A = m2 - 2m là:
A . - 1
B . - 2
C .8
D . 1
Cho hàm số f x = x + 4 − 2 x khi x > 0 m x + m + 1 4 khi x ≤ 0 , m là tham số. Tìm giá trị của m để hàm số có giới hạn tại x = 0
A. m = 1 2
B. m = 1
C. m = 0
D. m = − 1 2
Cho hàm số f x = x + 4 - 2 x , x > 0 m x + m + 1 4 , x ≤ 0 , m là tham số. Tìm giá trị của tham số m để hàm số có giới hạn tại x = 0.
A. m = 1
B. m = 0
C. m = 1 2
D. m = - 1 2
Đặt (S) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = 4 - x 2 , trục hoành và đường thẳng x = - 2 , x = m - 2 < m < 2 . Tìm giá trị của tham số m để S = 25 3
A. 2
B. 3
C. 4
D. 1
Cho hàm số f ( x ) = 2 x + m k h i x ≤ 0 1 + 4 x - 1 x k h i x > 0 Tìm tất cả các giá trị của m để tồn tại giới hạn l i m x → 0 f ( x ) .
A. m = 0
B. m = 2
C. m = 4
D. m = 1
Tìm giá trị của tham số m sao cho y = x 3 - 3 x + 2 ( C ) và d : y = m ( x + 2 ) giới hạn bởi hai hình phẳng có cùng diện tích
A. 0<m<1
B. m=1
C. 1<m<9
D. m=9
Có tất cả bao nhiêu giá trị nguyên của m để hàm số f x = 8 3 x + 1 − 2 x 2 − 1 k h i x > 1 m 3 x 2 − m − 3 x k h i x ≤ 1 có giới hạn tại x = 1.
A. 1
B. 2
C. 3
D. 0
Cho hàm số y = x - 3 x - m 2 + 1 (m là tham số; m ≠ ± 2 ). Có bao nhiêu giá trị của tham số m để hình phẳng giới hạn bởi hai trục tọa độ và hai đường tiệm cận của đồ thị hàm số đã cho là một hình vuông.
A. 1
B. 3
C. 2
D. 4.
Cho hàm số y = x 2 - m x ( 0 < m < 4 ) có đồ thị (C). Gọi S 1 là diện tích hình phẳng giới hạn bởi (C) và trục hoành; S 2 là diện tích hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x=m,x=4. Biết S 1 = S 2 , giá trị của m bằng
A. 10 3 .
B. 2.
C. 3.
D. 8 3 .