Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm các số nguyên dương x, y, z thỏa mãn điều kiện ( x + 1) ( y + z) = xyz + 2.
Tìm các số nguyên dương x,y,z thỏa mãn điều kiện (x+1)(y+z)=xyz+2
Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z)
Cho x;y;z nguyên dương thỏa mãn :x+y+z=xyz
CMR:
\(\frac{1+\sqrt{x^2+1}}{x}+\frac{1+\sqrt{y^2+1}}{y}+\frac{1+\sqrt{z^2+1}}{z}< =xyz\)
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Cho x ,y ,z là các số nguyên dương thỏa mãn xyz = 1 . Chứng minh rằng :
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge\frac{3}{2}\)
Cho x y z là các số dương thỏa mãn xyz=1
Tìm giá trị nhỏ nhất A=x³+y³+z³+2x/(y+ z)+2y/(x+z)+2z/(x+y)
tìm tất cả các bộ ba số nguyên dương (x,y,z) thỏa mãn xyz= \(x^2-2z+2\)